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Wrinkling of Tympanic
Membrane Under
Unbalanced Pressure
Mechanics of tympanic membrane (TM) is crucial for investigating the acoustic transmis-
sion through the ear. In this study, we studied the wrinkling behavior of tympanic mem-
brane when it is exposed to mismatched air pressure between the ambient and the middle
ear. The Rayleigh–Ritz method is adopted to analyze the critical wrinkling pressure and
the fundamental eigenmode. An approximate analytical solution is obtained and vali-
dated by finite element analysis (FEA). The model will be useful in future investigations
on how the wrinkling deformation of the TM alters the acoustic transmission function of
the ear. [DOI: 10.1115/1.4035858]

1 Introduction

Tympanic membrane (TM, commonly referred to as the ear
drum) is a thin biomembrane that separates the auditory canal
from the middle ear cavity (Fig. 1(a)). It plays an important role
in hearing by transmitting acoustic waves into the cochlea. Under
many environmental circumstances, ambient (external) air pres-
sure can vary by a few Pa to a few kPa, which can result in signifi-
cant influence on the hearing ability [1,2]. Therefore, it is
crucially important to study the mechanical properties and

material behavior of the TM. Liang et al. [3] combined experi-
mental and numerical methods to measure the mechanical proper-
ties of guinea pig TM subjected to quasi-static pressure and
estimated the Young’s modulus of guinea pig TM from 15.2 to
28.3 MPa. From their FEA results, when the ambient pressure is
lower than the pressure in the middle ear, the TM forms a
multiple-wave wrinkling pattern in the out-of-plane direction
[1,2]. The wrinkling deformation can be the source of significant
change in the acoustic characteristics of the TM and therefore
alters the hearing of the ear. However, the mechanism of this
wrinkling is not very clear, which hinders further investigations
on how the pressure mismatch alters acoustic characteristics.
Although numerous studies investigated the buckling of plates,
membranes, and shells [4–9], the analyses are not directly
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applicable to the buckling of soft biomembranes here. For exam-
ple, Sharghi et al. [4] used an analytical approach to investigate
the buckling of truncated conical shells made of composite mate-
rials with general lamination sequence. Dung et al. [5] studied the
buckling of an eccentrically stiffened sandwich truncated conical
shell subjected to an axial compressive load and uniform pressure.
Anh et al. [7] investigated the nonlinear stability of thin function-
ally graded material annular spherical shell on elastic foundations
subjected to external pressure and thermal loads. Sofiyev and
Kuruoglu [9] used the large deformation theory and von
Karman–Donnell-type of kinematic nonlinearity to study the
buckling of truncated conical composite shell surrounded by an
elastic medium. Most of these studies focused on macroscopic
structures with composite materials and are not readily applicable
to soft biomembranes such as the TM here. In this study, based on
the von Karman–Donnell type of kinematic and nonlinear shell
theory, an analytical model is developed for the wrinkling of the
TM. The results are validated by FEA, which will inform future
studies on acoustic characteristics.

2 Mechanics Model

Figure 1(c) shows a schematic of the three-dimensional shape
of the TM which resembles sand hill with the top of the hill point-
ing toward the middle ear cavity. The surface facing toward the
middle ear is referred to as the medial side of the TM (Fig. 1(c)),
and the opposite surface is called the lateral side. The outer rim of
the TM is attached to the auditory canal, and the highlighted area
(purple in Figs. 1(b)–1(d)) is firmly attached to the manubrium
bone of the malleus. Figures 1(b) and 1(d) show the projection-
view (along the axis direction, dashed line in Fig. 1(c)) and side-
view of the TM, respectively. Typically, e.g., for guinea pig, the
Young’s modulus of the manubrium bone (�10 GPa) is 3 orders
of magnitude larger than that of the TM (15.3–28 MPa); therefore,
the TM is considered to be fixed in the area attached to the manu-
brium bone. We simplified the TM to be an axially symmetric
truncated conical shell as shown in Fig. 1(e), which is fixed at the
top rim to simulation the support from the manubrium bone and
fixed at the bottom rim to simulation the support from the auditory

Fig. 1 Schematics of the tympanic membrane (TM) and the mechanics model: (a) location of
the TM, (b) projection-view of the TM from the medial side, (c) 3D-view of the TM, (d) side-view
of the TM, (e) 3D-view of the simplified axial-symmetric mechanics model, and (f) side-view of
the mechanics model
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canal. The coordinates are shown in Fig. 1(f): S is the distance
from the vertex along a generator; h is the angle in the circum-
ferential direction; u and v (not shown in the figures) denote
the displacement along the S and h directions, respectively, and
w is the displacement perpendicular to the membrane surface
(Fig. 1(f)). Geometric parameters of the truncated conical shell
include c—the semivertical angle, S1 and S2—the distances
from the vertex to the top and bottom rims, respectively. When
the ambient (external) pressure is lower than the pressure in the
middle ear cavity (negative pressure), a uniform pressure p is
applied on the medial side of the TM, acting against the surface
normal (Fig. 1(f)).

When the conical shell deforms, we assume the following kine-
matically admissible displacement field which is adopted in previ-
ous stability analysis of conical shell [10]

u ¼ A cos
p S� S1ð Þ
S2 � S1

� �
cos khð Þ

v ¼ B sin
p S� S1ð Þ
S2 � S1

� �
sin khð Þ

w ¼ C sin
p S� S1ð Þ
S2 � S1

� �
cos khð Þ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(1)

where A, B, and C are the buckling amplitudes to be determined,
and k is wave number. This displacement field satisfies the bound-
ary condition of u¼ v¼w¼ 0 at S¼ S1 and at S¼ S2 and also
describes k wrinkling waves in a circumference.

The strain–displacement relations at the middle surface of a
deformed truncated conical shell are given by [11]

eS ¼
@u

@S

eh ¼
1

S sin c
@v

@h
þ u

S
� w

S
cot c

eSh ¼
1

S sin c
@u

@h
� v

S
þ @v

@S

8>>>>>>>>><
>>>>>>>>>:

(2)

in which the membrane strains are assumed to be small at the
onset of wrinkling, and therefore only the leading-order terms are
considered. The bending curvatures are [11]

vS ¼ �
@2w

@S2

vh ¼ �
1

S

@w

@S
� 1

S2 sin2c

@2w

@h2

vSh ¼
1

S2 sin c
@w

@h
� 1

S sin c
@2w

@S@h

8>>>>>>>>><
>>>>>>>>>:

(3)

where finite rotation of the shell is taken into account by consider-
ing the second-order terms.

The unbalanced pressure loading is considered to be quasi-
static (as is in the corresponding experiments of Liang et al. [3]);
therefore, the transient response of the TM due to viscoelasticity
is not considered in this study. Experiments also found that the
TM is linear elastic for strains up to �10% [3]; therefore, material
nonlinearity is not considered when analyzing the small deforma-
tion at initial wrinkling. However, for future studies on post-
buckling of the TM under auditory high frequency range, a
frequency-dependent viscoelastic–hyperelastic model should be
taken into account. The strain energy of the structure consists of
the membrane energy Um and the bending energy Ubend. The
membrane and bending energies are given as [10]

Um ¼
Eh

2 1� �2ð Þ

ð2p

0

ðS2

S1

e2
S þ 2�ehes þ e2

h þ
1� �

2
� e2

Sh

� �
� S sin cð ÞdSdh (4)

and

Ubend ¼
Eh3

24 1� �2ð Þ

ð2p

0

ðS2

S1

v2
Sþ 2�vhvs þ v2

hþ
1� �

2
� v2

Sh

� �
� S sin cð ÞdSdh (5)

where E and � are the Young’s modulus and Poisson’s ratio of the
membrane, respectively, and h is the thickness of the TM.

Following the approach developed by Baruch and Singer [11],
Steyer and Zien [12] and Kendrick [13–15] for hydrostatically
loaded conical shells, the work by the external load p is calculated
as (see the Appendix for details) [11]

Wp ¼
p

2
tan c

ð2p

0

ðS2

S1

S2 sin c
2

@w

@S

� �2

þ 1

sin c
@w

@h

� �2
" #

dSdh (6)

The total potential energy of the system is obtained by

P ¼ Um þ Ubend �Wp (7)

Minimizing the total potential energy P with respect to the
amplitudes A, B, and C, i.e.,

@P
@A
¼ 0

@P
@B
¼ 0

@P
@C
¼ 0

8>>>>>>>>><
>>>>>>>>>:

(8)

yields

e11 e12 e13

e12 e22 e23

e13 e23 e33

2
66664

3
77775

A

B

C

2
66664

3
77775 ¼ 0 (9)

where eij (i, j¼ 1, 2, 3) are analytical functions (given in the
Appendix, eij¼ eji) depending on the nondimensional parameters
c, S2/S1, S2/h, k, and p/E. Nonzero solution exists for Eq. (9) only
when the determinant of the [eij] matrix equals zero, i.e., det
(eij)¼ 0 which yields the critical pressure pcr as

pcr ¼ E � f c;
S2

S1

;
S2

h
; �; k

� �
(10)

where f is a nondimensional function determined from det
(eij)¼ 0. The wave number kmin corresponds to the lowest critical
pcr_min can be obtained by solving

@pcr

@k
¼ 0 (11)

and then rounding to the nearest smaller/larger integer.

3 Results and Discussion

For the TM of the guinea pig [3], the Young’s modulus is taken
as E¼ 25 MPa, the Poisson’s ratio is �¼ 0.20, and the thickness is
h¼ 10 lm. The shape of a typical TM is characterized by
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c¼ 55.4 deg, S2¼ 3.04 mm, and S1¼ 1.25 mm. Using these
parameters, Eq. (11) gives k¼ 8.47, then the pcr at k¼ 8 and k¼ 9
are compared. It was found that k¼ 9 corresponds to the minimum
pcr¼ 30.5 Pa. These values agree very well with FEA (linear per-
turbation analysis with shell elements, based the above data, to
extract the buckling deformation mode and the corresponding crit-
ical pressure) that yields k¼ 9 and pcr¼ 30.9 Pa. The wrinkled
shape from the FEA (Fig. 2(a)) also agrees reasonably well with
experimental and post-buckling FEA images obtained by
Liang et al. [3].

FEA was also used to validate the assumption of simplified
axial-symmetric shape. Figure 2(b) shows an FEA model that
accounts for the exact shape of the TM and the manubrium bone,
which yields similar wrinkling pressure (pcr¼ 29.4 Pa, comparable
to the 30.5 Pa by the analytical model) and patterns (the period of
the wrinkling waves is 36.4 deg, compared to 40 deg by the analyt-
ical model). These results confirm that the effect of the manu-
brium bone on the critical pressure and the wrinkling shape is
relatively small.

For TMs of similar shape (keeping c¼ 55.4 deg, S2/S1¼ 2.43,
and �¼ 0.2), a simplified expression for the critical pressure can
be obtained by

pcr

E
� 101=4 � h

S2

� �5=2

(12)

Fig. 2 Wrinkling patterns of the TM obtained by FEA using (a) the simplified axial-symmetric model in Fig. 1(e)
and (b) TM supported by the manubrium bone as in Figs. 1(b)–1(d)

Fig. 3 Scaling law plotted as the normalized critical pressure
versus normalized thickness. The solid lines correspond to the
analytical solution for different wave number k, the dashed line
corresponds to the approximate expression in Eq. (12), and the
diamond dots correspond to FEA results.
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which is a very useful scaling law for in vivo measurement of the
mechanical properties of the TM [3]. Equation (12) is plotted in
Fig. 3, which shows very nice agreements between the analytical
model, the approximate expression, and FEA.

4 Conclusions

In this paper, an analytical model is established for the wrin-
kling of a soft biomembrane (the TM) undergoing mismatch pres-
sure between the middle and external ear. The critical wrinkling
pressure and the wave number are obtained analytically, which
agree very well with FEA and experimental observations. It was
found that the support from the manubrium bone has small effect
on the critical wrinkling pressure and the wrinkling shape. The
analytical model established here provides a useful tool for future
studies on the mechanics of TM such as in vivo mechanical prop-
erty measurements and effects of pressure on the acoustic trans-
mission function of the eardrum.
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Appendix

A.1 Work Done by Hydrostatic Pressure. To calculate the
work done by the external hydrostatic pressure, we start by calcu-
lating the prebuckling stress resultants via equilibrium under the

reference (undeformed) geometry. Using the membrane equations
[16] and consider only the pressure normal to the shell surface,
one finds these prebuckling stress resultants to be

N0
S ¼ �

PS

2
tan c

N0
h ¼ �PS tan c

N0
Sh ¼ 0

8>>>>>>><
>>>>>>>:

(A1)

where N0
S , N0

h , and N0
Sh are the membrane stresses along the S, h,

and shear directions, respectively. Upon the onset of buckling, the
work done by pressure p is equal to twice the strain energy in the
shell, in which finite strain components of e0S, e0h, and e0Sh need to
be considered

e0S ¼
@u

@S
þ 1

2

@w

@S

� �2

e0h ¼
1

S sin c
@v

@h
þ u

S
� w

S
cotcþ 1

2S2 sin2c

@w

@h

� �2

8>>>>>><
>>>>>>:

(A2)

The work done by the external load is then obtained by

Wp ¼
ð2p

0

ðS2

S1

N0
Se
0
S þ N0

he
0
h þ N0

She
0
Sh

� �
S sin ðcÞdSdh (A3)

By taking N0
Sh ¼ 0 and simplifying Eq. (A3) using the displace-

ment field in Eq. (1), Eq. (6) can be obtained.

A.2 Energy minimization. The total potential energy P is
derived to be

P ¼ KA2 þ 1� �ð ÞKB2

2
þ DC2 p

S2 � S1

� �2
" #

p sin c
2

p
S2 � S1

� �2 S2
2 � S2

1

4

� �

þ 1

4
pKBAk 3b2 � p� b2� � �pð Þ � A cos cpKC

2
b2 � �pð Þ

þ
þKpC2 cos2c

2 sin c
� pKkCBcotcþ pKA2

2 sin c
sin2cþ 1� �ð Þk2

2

� �

þ pKB2

2 sin c
k2 þ 1� �ð Þ sin2c

2

� �
þ pDC2

sin c
p

S2 � S1

� �2

k2 þ sin2c
2

� �
8>>>><
>>>>:

9>>>>=
>>>>;

1

2
ln

S2

S1

� �

� 1

2
b1

pKB2

2 sin c
k2 þ 1� �ð Þ sin2c

2

� �
þ KpC2 cos2c

2 sin c

� pKA2

2 sin c
sin2cþ 1� �ð Þk2

2

� �
� pKCBkcotc

þ pDC2

sin c
p

S2 � S1

� �2

2� � 1ð Þk2 � sin2c
� 	

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

� 1

4

pDb1C2k2

sin c
2p

S2 � S1

� �2

2� �ð Þ � k2

2 sin2c

" #

� pp

2
C2 sin2c

cos c
p

S2 � S1

� �2 S3
2 � S3

1

12
þ S2 � S1ð Þ3

8p2

� �
� ppC2k2

2 cos c
S2 � S1

2
(A4)
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where b1 ¼
Ð S2

S1
1=S cos 2p S� S1ð Þ=S2 � S1½ �dS, b2 ¼

Ð S2

S1
1=Ssin

2p S� S1ð Þ=S2 � S1½ �dS, K ¼ Eh= 1� �2ð Þ, and D ¼ Kh2=12.
Minimizing P by Eq. (8) yields Eq. (9), and

e11 ¼ sin c
p

S2=S1 � 1

� �2 S2
2=S2

1 � 1

4

� �

þ 1

2 sin c
sin2cþ 1� �ð Þk2

2

� �
ln

S2

S1

� �
þ b1

� �

e12 ¼
k 3b2 � p� b2� � �pð Þ

4

e13 ¼ �
cos c b2 � �pð Þ

2

e22 ¼
1� �ð Þsin c

2

p
S2=S1 � 1

� �2 S2
2=S2

1 � 1

4

� �

þ 1

2 sin c
k2 þ 1� �ð Þ sin2c

2

� �
ln

S2

S1

� �
� b1

� �

e23 ¼ �
kcotc ln S2=S1ð Þ � b1½ �

2

and

e33¼
sinc
12

h2

S2
1

p
S2=S1�1

� �4 S2
2=S2

1�1

4

� �

þ1

2
ln

S2

S1

� �
cos2c
sinc

þ 1

6sinc
h2

S2
1

p
S2=S1�1

� �2

k2þ sin2c
2

� �" #

�b1 cos2c
2sinc

� b1k2

6sinc
h2

S2
1

p
S2=S1�1

� �2

2��� k2

2sin2c

 !

� 1

3sinc
p

S2=S1�1

� �2

b1

h2

S2
1

2��1ð Þk2� sin2c
� 	

� 1��2ð Þpsin2c
Ecosc

S1

h

p
S2=S1�1

� �2

� S3
2=S3

1�1

12
þ S2=S1�1ð Þ3

8p2

� �
� 1��2ð Þpk2

Ecosc
S1

h

S2=S1�1

2
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