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An Improved Fourier–Ritz Method
for Analyzing In-Plane Free
Vibration of Sectorial Plates
A modified Fourier–Ritz approach is developed in this study to analyze the free in-plane
vibration of orthotropic annular sector plates with general boundary conditions. In this
approach, two auxiliary sine functions are added to the standard Fourier cosine series to
obtain a robust function set. The introduction of a logarithmic radial variable simplifies
the expressions of total energy and the Lagrangian function. The improved Fourier
expansion based on the new variable eliminates all the potential discontinuities of the
original displacement function and its derivatives in the entire domain and effectively
improves the convergence of the results. The radial and circumferential displacements
are formulated with the modified Fourier series expansion, and the arbitrary boundary
conditions are simulated by the artificial boundary spring technique. The number of terms
in the truncated Fourier series and the appropriate value of the boundary spring retrain-
ing stiffness are discussed. The developed Ritz procedure is used to obtain accurate solu-
tion with adequately smooth displacement field in the entire solution domain. Numerical
examples involving plates with various boundary conditions demonstrate the robustness,
precision, and versatility of this method. The method developed here is found to be com-
putationally economic compared with the previous method that does not adopt the
logarithmic radial variable. [DOI: 10.1115/1.4037030]

Keywords: sectorial plate, in-plane vibration, improved Fourier–Ritz method, logarith-
mic radial variable

1 Introduction

Circular and sector plates are widely used in engineering prac-
tice as components of different structures such as airplane wings,
building walls, floor slabs, and loaded membrane and even in
nuclear engineering. It is critically important to understand the
dynamic characteristics of such structures in order to ensure reli-
able structural performance. Having extensively investigated the
vibration of plates of various shapes, support, and loading condi-
tions, many researchers have made great efforts on this problem
using a large number of different methods [1–9]. For one case:
natural vibration of thick plate, a comprehensive survey of the
references up to 1994 can be found in Ref. [5]. However, majority
of the previous studies focus on the out-of-plane vibration of
plates [1–5] rather than in-plane vibration [6–9]. Recently, it was
found that the in-plane vibration has a significant effect on the
sound radiation and transmissions of vibration energies in build-
up structures [10], and determination of natural in-plane vibrating
frequencies of plates within the medium to high-frequency range
is also important and has always been a challenging problem.
Therefore, a better understanding on the in-plane vibration behav-
iors of plates is required to design these structures properly.

The use of Levy-type (or single series) solutions in vibration
analysis of elastic plates or shells has been remained as one of the
most economic approaches in structural mechanics. The most
attractive feature of this strategy lies in its ability to apply in dif-
ferent problems with a range of boundary conditions and variable
mechanical properties (for plates with variable thickness, func-
tionally graded materials, laminated structures, etc.). In solving
the in-plane problem, it is an important factor to represent or
approximate the displacement field properly. Let us briefly review

relevant works of free-in-plane vibration of the orthotropic circu-
lar and sector plates. Onoe [6] used special functions to express
the circumferential and radial displacements on basis of the
Love’s theory. Holland [7] and Farag and Pan [11] applied trigo-
nometric and Bessel functions in representing the mode shape.
Chen and Liu [12] investigated the thin plates of different shapes
and used a least-square method to satisfy the boundary conditions.
For circular and annular plates, Irie et al. [8] utilized the transfer
matrix method. For circular annular plates with periodicity in the
circumferential direction, Bashmal et al. [13] presented a general-
ized Rayleigh–Ritz method. Park [14] derived the frequency equa-
tions corresponding to the in-plane vibration using Hamilton’s
principle. For the free in-plane vibrations of an annular sector
plate, Seok and Tiersten [15] solved the problem by a variational
approximation procedure. Ravari and Forouzan [16] did relevant
vibrating plane problems for circular annular plates by using
stress–strain–displacement expressions. Vladimir et al. [17]
adopted the displacement potentials to study the free in-plane
vibration of the rectangular, annular, and circular plates. The
work of Kim et al. [18] is based on a new assumption of the mode
shapes relevant with the number of nodal diameters. Some numer-
ical researches are also made. For example, Singh and Muham-
mad [19] presented a numerical method to study the free in-plane
vibration of the isotropic nonrectangular plate by means of inter-
polation technology. Leung et al. [9] used a Fourier p-element in
analyzing the vibrating plane problems.

It should be emphasized that Wang et al. [20] used a modified
Fourier–Ritz approach to solve for the free in-plane vibration of
orthotropic circular, annular, and sector plates subjected to general
boundary conditions. The Fourier–Ritz approach was first pro-
posed by Li [21,22], who combined the modified Fourier series
technique and Ritz method. Recently, this modified Fourier series
technique has attracted a lot of attentions and is widely used in the
vibration analysis of plate and shell structures with general bound-
ary conditions [23–29]. The authors discussed the free out-of-
plane or in-plane vibrations of plates or shells in various shapes.
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To analyze the static bending problems of sector plates, Yao
et al. [30] presented the symplectic method in which the logarith-
mic radial variable is used. Kim and Yoo [31] adopted a new type
of variable to obtain an analytic solution to the flexural responses
of annular sector thin plates.

In the current study, a new variable relevant to the radius, the
logarithm of the radius, is introduced to investigate the in-plane
free vibration of annular sector plates with classical and elastic
boundary conditions. The method is based on the modified
Fourier–Ritz approach and extends previous research [20] to be
applicable to the free in-plane vibration of sectorial plate struc-
tures under general boundary conditions. In this method, the two
in-plane displacement functions are formulated in 2D Fourier
cosine series, and the auxiliary functions are two sin functions.
The introduction of the auxiliary functions ensures and accelerates
the convergence of the Fourier series. Then, the Ritz procedure is
used to obtain the unknown expanded coefficients and solve the
eigenvalue and eigenvector problems.

Our main work focuses on presenting the basic simplified
theory with the use of the logarithmic radial variable, then the
global stiffness matrix and mass matrix can be expressed in a
much simpler explicit form, and the integration can also be per-
formed explicitly. These advantages significantly reduce the com-
putation cost compared to the previous theories that do not use the
logarithmic radial variable. Moreover, for a given solution accu-
racy, the number of terms in the truncated Fourier series is less
than that in the previous method [20]. Compared to Ref. [20], the
stiffness matrix is simplified significantly as the element of the
stiffness matrix is explicit, which need not be the tedious process
of numerical integration. What’s more, the dimension of the
matrix in the eigenproblem is also smaller as fewer terms in the
truncated series are needed. Comparison of computation and con-
vergence rate shows the significance of the method.

2 The Basic Theory

2.1 Preliminaries. The analysis starts with an orthotropic
annular sector plate with uniform thickness h, inner radius R0,
outer radius R1, and sector angle /, as shown in Fig. 1. Displace-
ments of the plate in the r- and h-directions are denoted by
u¼ u(r, h, t) and v¼ v(r, h, t), respectively, where t denotes time.

General support conditions are considered, which are realized
by massless normal and tangential springs along each edge. Out-
of-plane bending is not considered in this study, and constraints
against out-of-plane rotation are not imposed. Similar to the dis-
cussion by Dozio [32], the stiffness values of each restraining
spring at different locations and directions are introduced. The
symbol kd

c stands for the spring restraining stiffness, with its sub-
scripts c ¼ R0, h0, R1, and h1 referring to the inner, bottom, outer,
and upper edges, respectively, and d ¼U, V denoting the normal
and tangential directions, respectively. For instance, kU

h0 indicates
the stiffness values for springs in the surface normal direction
along the bottom edge of the plate. The stiffness for each of the
elastic restraints can vary as a function along an edge, i.e., kd

c ¼
kd
c ðhÞ for c ¼R0, R1 and kd

c ¼ kd
c ðrÞ for c ¼ h0; h1.

A set of appropriate stiffness values can be selected to simulate
classical boundary conditions, such as clamped, free, simply sup-
ported, and elastically supported conditions that can be cataloged
into two kinds as discussed by Gorman [33] in the case of in-
plane vibration. Table 1 in Sec. 3 summarizes the stiffness values
that correspond to various boundary conditions.

For general supported orthotropic sector plates, based on the
force equilibrium at the four edges, the boundary conditions corre-
sponding to the elastic spring can be expressed as

kU
Riu ¼ Arr

@u
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þ Arh
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� �
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� �
i ¼ 0; 1ð Þ (2)

where Arr ¼ ðEr=ð1� lrlhÞÞ;Ahh ¼ ðEh=ð1� lrlhÞÞ; and Arh ¼
ðlrEh=ð1� lrlhÞÞ are the in-plane tensile stiffnesses, Grh is the
shear Young’s modulus, and Ez and lz (z¼ r or h) are Young’s
modulus and Poisson’s ration in the z directions, respectively.

The strain energy Vpl of the sector plate is obtained as

Vpl ¼
h
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Normal and tangential boundary restraining springs are
arranged around all the plate edges to simulate the boundary con-
ditions. The potential energy Vs stored in the boundary springs is
written as

Vs ¼
1

2
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(4)

Adding the strain energy Vpl and the potential energy Vs together
yields
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(5)

Fig. 1 An orthotropic annular sector plate with arbitrary in-
plane elastic edge supports
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The kinetic energy T of the sector plate is

T ¼ �qh

2
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ð/

0
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þ @v
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� �2
" #

rdrdh (6)

where �q is the plate’s mass density. Considering an harmonic
motion with frequency x, i.e.,

uðr; h; tÞ ¼ �uðr; hÞejxt ¼ �uejxt

vðr; h; tÞ ¼ �vðr; hÞejxt ¼ �vejxt

�
(7)

the maximum strain energy Vmax and the maximum kinetic energy
Tmax for the plate are
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and

Tmax ¼
�qhx2

2

ðR1

R0

ð/

0

�u2 þ �v2ð Þrdrdh (9)

respectively. According to the conventional Ritz approximation,
the following solutions are assumed for the displacements ampli-
tudes �u and �v:

�u ¼
XM

m¼1

XN

n¼1

amnvmðrÞfnðhÞ

�v ¼
XM

m¼1

XN

n¼1

bmnvmðrÞfnðhÞ

8>>>>><
>>>>>:

(10)

where amn and bmn are the unknown coefficients, and vmðrÞ and
fnðhÞ are the appropriate admissible functions. As pointed out by
Budiansky and Hu [34], the geometrical boundary conditions of
the problem need to be satisfied by the summation of the whole
set of admissible functions, but do not have to be satisfied by each
term in the expansion.

2.2 The Logarithmic Radial Variable and the Improved
Theory. In this study, a new variable q is introduced as r¼ eq,
then as pointed out in Ref. [31], taking logarithm and differentiat-
ing both terms of the relationship yield

dq
dr
¼ d ln rð Þ

dr
¼ 1

r
(11)

Using Eq. (11), the following is obtained:
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r
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(12)

where Qðr; hÞ stands for an arbitrary function varying with r and
h, and Q1ðq; hÞ is Qðr; hÞ written with the variable q. Substituting
Eq. (12) into Eqs. (8) and (9), we have
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and

Tmax ¼
�qhx2

2

ðln R1

ln R0

ð/

0

u2 þ v2ð Þe2qdqdh (14)

In using the Ritz method, the energy functional is defined by
Lagrangian function as

L ¼ V � T (15)

To further simplify the expressions, a new variable n ¼
q� ln R0 ¼ lnðr=R0Þ is introduced. Equations (13) and (14)
become
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endn

(16)

Table 1 Convergence of frequency parameters X for the circular sectorial plate with different spring stiffnesses

Value of spring stiffness Value of spring stiffness

Mode R0/R1 105 106 107 108 FE results R0/R1 105 106 107

1 1/20 2.8772 2.8810 2.8711 3.2853 2.8737a 1/40 2.8818 2.8808 3.1621
2 1/20 4.3531 4.3527 4.3438 4.0873 4.3478a 1/40 4.3548 4.3558 4.3783
3 1/20 4.3807 4.3757 4.3963 4.2211 4.3632a 1/40 4.3832 4.3769 4.4701
4 1/20 5.7992 5.8113 5.8366 5.8871 5.7913a 1/40 5.8189 5.8332 5.7949

aResults from Ref. [20].
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and

Tmax ¼
�qhx2

2
R2

0

ðLR

0

ð/

0

u2 þ v2ð Þe2ndndh (17)

respectively, where LR ¼ lnðR1=R0Þ.
All the items in Eq. (16) have constant coefficients for the strain

energy terms, while in Eq. (8) most of the corresponding coeffi-
cients vary with respect to the radius r. Moreover, the starting val-
ues of the definite integration in the n; h directions are all from
zero, which is more convenient for further derivations.

With the new variable n, boundary conditions corresponding to
Eqs. (1) and (2) become
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;
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2.3 Solution Procedure by Using the Logarithmic Radial
Variable. As discussed by Wang et al. [20], the importance of
choosing the admissible function is the “core work” and “the first
work,” which can be traced to previous studies [21,22]. Using the
logarithmic radial variable, the displacements in the two direc-
tions become

uðn; hÞ ¼
XM

m¼1

XN

n¼1

cmnfmðnÞgnðhÞ

vðn; hÞ ¼
XM

m¼1

XN

n¼1

dmnfmðnÞgnðhÞ

8>>>>><
>>>>>:

(20)

where cmn and dmn are the unknown coefficients, and fmðnÞ and
gnðhÞ are the appropriate admissible functions. Apparently, the
displacement functions in Eq. (20) are different from the original
Eq. (10). The truncated expansion is adopted for the convenience
of numerical computation, and the solution can be of arbitrary pre-
cision depending on the number of the terms included. In actual
calculations, the value of M and N will be selected to obtain
results with acceptable accuracy.

As for the admissible functions, Ilanko et al. [35,36] presented
a discussion on the characteristics of the set of admissible func-
tions used in the Rayleigh Ritz method. The discussion includes
the use of polynomials, trigonometric functions, and a combina-
tion of both.

Dozio [32] also used a trigonometric form in free in-plane
vibration analysis of rectangular plates with arbitrary elastic
boundary conditions. Another method to formulate the admissible
functions is to use an improved Fourier expansion that considers
the continuity of the derivatives of a certain order [20]. Similarly,
a set of simple trigonometric series for constructing the displace-
ment functions in this study are selected as

fm nð Þ ¼
sin n

mp
LR

� �
; m ¼ 1; 2

cos n
m� 3ð Þp

LR
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; m � 3

8>>>><
>>>>:

(21)

gn hð Þ ¼

sin h
np
/

� �
; n ¼ 1; 2

cos h
n� 3ð Þp

/

 !
; n � 3

8>>>><
>>>>:

(22)

The Fourier series expansion in Eqs. (21) and (22) contains a com-
plete series and therefore exhibits good numerical stability. Con-
ventional Fourier series generally have the boundary convergence
problems except for a few simple boundary cases. As discussed in
the work of Wang et al. [20], the displacement functions should
satisfy the continuity conditions and the boundary constraints, so
the auxiliary functions must be closed in form and sufficiently
smooth over the entire domain [0, L]. In other words, the introduc-
tion of the auxiliary function here eliminates the potential discon-
tinuities of the displacement function and its derivatives in the
whole domain. It is also significant that the auxiliary function can
improve the convergent properties of Fourier series. Mathemati-
cally, the series in the form of Eqs. (20)–(22) is able to expand
and uniformly converge to any function Hðn; hÞ 2 C1, i.e., have
up to the second derivatives for 8ðn; hÞ 2 D : ð½0;LR� � ½0;/�Þ.

Substitution of Eqs. (20)–(22) into Eqs. (16) and (17) and mini-
mizing the function L¼Umax� Tmax by performing the Ritz pro-
cedure with respect to the unknown coefficients cmn and dmn yield
the following eigenvalue equations:
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r¼1
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8>>>>><
>>>>>:

(23)

The elements of the plate’s global stiffness and mass matrices in
Eq. (23) are given by

Kuu
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mr E0
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and
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in which
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ns ¼ gnð0Þgsð0Þ
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ns ¼ gnð/Þgsð/Þ

(
(26)

Iab
mr ¼

ðLR

0

dafm

dna
dbfr

dnb dn; Iab
ns ¼

ð/

0

dagn

dha
dbgs

dhb dh

Jcd
mr ¼

ðLR

0

kd
c fm nð Þfr nð Þendn; Jcd

ns ¼
ð/

0

kd
cgn hð Þgs hð Þdh

8>>><
>>>:

(27)

Pmr ¼
ðLR

0

fmfre
2ndn (28)

When the spring stiffness of the elastic boundary is uniform, it
can be found that
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Jcd
mr ¼ kd

c I00
ns (29)

Equation (23) can also be written in the matrix form

Kuu Kuv

Kvu Kvv

� 	
� x2 Muu 0

0 Mvv

� 	� 

Cu

Dv

� 

¼ 0 (30)

where

Cu ¼ c11; c12; c13;…; c1N ; c21;…; crs;…; cMNf g
Dv ¼ d11; d12; d13;…; d1N ; d21;…; drs;…; dMNf g (31)

By solving the eigenvalue problem in Eq. (30), the frequencies of
orthotropic annular sector plates can be obtained. Substituting the

obtained eigenvectors into Eq. (20) yields the corresponding
mode shapes.

In this method, the integrals involved in the calculation of the
mass and stiffness matrices can be obtained analytically, thus
avoiding tedious numerical iterations [13] or integration [20]
needed by previous methods. For the case of uniform spring stiff-

ness kd
c , with the selected admissible functions in Eqs. (21) and

(22), the explicit forms of all the sub matrices, such as Kuu, Kvv,
Kuv, Muu, and Mvv, can be obtained with the aid of several basic
integration formulas in the Appendix. Moreover, these matrices
can also be organized into four-block matrices as

Z ¼ Z11 Z12

Z21 Z22

� 	
(32)

where Z can stand for Kuu, Kvv, Kuv, Muu, and Mvv, and
Z11;Z12;Z21;Z22 are 2� 2, 2� MN � 2ð Þ; MN � 2ð Þ � 2,
MN � 2ð Þ � MN � 2ð Þ matrices, respectively. When the chosen

admissible functions in Eqs. (21) and (22) do not include the first
two terms, this corresponds to the case of conventional Fourier
expansion for the in-plane displacements, and the corresponding
matrix Z will degenerate to Z22.

Table 2 The properties of materials used in the computations

Er=Eh Eh (GPa) lr �q (kg/m3) Corresponding cases

Material A 40 70 0.3 7850 Tables 1 and 4 and Fig. 2
Material B 20 70 0.3 7850 Tables 5, 7, and 8 and Fig. 3
Material C 1 206 0.3 7850 Table 6

Table 3 Different nondimensional spring stiffness values for general boundary conditions

At r¼ constant At h¼ constant

Stiffness values Stiffness values

Boundary condition Essential conditions CU CU Essential conditions CV CV

Free (F) rr ¼ 0; srh ¼ 0 0 0 rh ¼ 0; srh ¼ 0 0 0

Clamped (C) u¼ 0, v¼ 0 107 107 u¼ 0, v¼ 0 107 107

Simple-support 1 (S1) u¼ 0, rr¼ 0 0 107 u¼ 0, rh¼ 0 107 0

Simple-support 2 (S2) u¼ 0, srh¼ 0 107 0 u¼ 0, rh¼ 0 107 0

Elastic 1 (E1) u 6¼ 0, srh¼ 0 10 0 u 6¼ 0, srh¼ 0 10 0

Elastic 2 (E2) v 6¼ 0, rr¼ 0 0 102 v 6¼ 0, rh¼ 0 0 102

Elastic 3 (E3) u 6¼ 0, v 6¼ 0 103 103 u 6¼ 0, v 6¼ 0 103 103

Table 4 Convergence of the first four frequency parameters for annular and sector plates with clamped boundary conditions for
all the edges

Present Present*

Shape M�N 1 2 3 4 1 2 3 4

Circular sector 7� 7 2.8730 4.3624 4.4152 5.8891 3.2971 5.1626 5.2938 7.1833
8� 8 2.8793 4.3531 4.4001 5.8588 3.2143 5.0223 5.0687 6.8529
9� 9 2.8644 4.3567 4.4053 5.8059 3.1732 4.8899 4.9349 6.6820

10� 10 2.8645 4.3456 4.4116 5.7527 3.1296 4.8230 4.8342 6.5154

(Circular sector) [20] 11� 11 2.8725 4.3428 4.3771 5.7839 2.9787 4.5141 4.5218 6.0085
12� 12 2.8725 4.3428 4.3771 5.7838 2.9660 4.4990 4.5153 5.9911
13� 13 2.8725 4.3428 4.3770 5.7838 2.9624 4.4930 4.4950 5.9829
14� 14 2.8725 4.3428 4.3770 5.7838 2.9531 4.4821 4.4903 5.9700

Annular sector 6� 6 3.3657 4.4766 5.8209 5.9731 3.4874 4.8055 6.2316 6.4281
7� 7 3.3656 4.4766 5.8206 5.9726 3.4874 4.7204 6.1281 6.3018
8� 8 3.3656 4.4765 5.8171 5.9715 3.4874 4.6706 6.0666 6.2314
9� 9 3.3655 4.4765 5.8171 5.9715 3.4874 4.6378 6.0250 6.1860

10� 10 3.3654 4.4763 5.8155 5.9719 3.4874 4.7230 5.8342 6.5141

(Annular sector) [20] 10� 10 3.3627 4.4742 5.8145 5.9651 3.4870 4.6523 6.0410 6.2141
11� 11 3.3627 4.4742 5.8145 5.9651 3.4870 4.6330 6.0380 6.1738
12� 12 3.3627 4.4742 5.8145 5.9651 3.4670 4.6224 6.0043 6.1708
13� 13 3.3627 4.4742 5.8144 5.9651 3.4670 4.6088 6.0021 6.1425
14� 14 3.3627 4.4741 5.8144 5.9651 3.4531 4.6011 5.9778 6.1404

Note: The results in bracket are from Ref. [20] with a much larger value of M and N. Present* means the results without considering the supplementary
terms in the admissible functions.
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Another important characteristic of the Fourier series is that the
orthogonality with the trigonometric functions with respect to
each other when integrated in the entire domain. To achieve the
global stiffness matrix, the orthogonality property is very useful to
reduce the effort in obtaining the matrix terms.

3 Numerical Results and Discussion

In this section, the convergence of the method is studied, and a
systematic method to assign the values of nondimensional spring
stiffness is discussed. A few numerical results are then compared
to those by previous studies to demonstrate the excellent accuracy
and reliability of the present method. A few computational

examples on free in-plane vibration of circular sectorial and annu-
lar sector plates under various classical boundary conditions, elas-
tic boundary conditions, demonstrate the extended applications of
this method.

There are three kinds of materials in the examples, and their
properties are listed in Table 2.

The shear elasticity Grh is defined according to Grh¼Eh/2/
(1� lrlh) as in Ref. [20]. For convenience, a nondimensional fre-

quency parameter X ¼ 2xR1=pð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�q= Er 1� lrlhð Þð Þ
� �q

is used in

all the results, also the nondimensional stiffness of the attached

springs is defined as ~K ¼ kd
c R1 1� lrlhð Þ=Er . A four-letter sym-

bol is introduced to indicate the boundary conditions of annular
and sector plates, starting with the first letter for the boundary con-
dition of the edge at r¼R0 and going counterclockwise for subse-
quent letters (second letter for boundary condition at h¼ 0, etc.).
The letters Ei (i¼ 1, 2, 3), Sj (j¼ 1, 2), C, and F denote type i elas-
tic boundary, type j simply supported, clamped, and free boundary
conditions, respectively. Nondimensional spring stiffness for these
boundary conditions is given in Table 3. For example, the symbol
E1CFS1 denotes an annular sector plate with E1 elastic boundary
condition at r¼R0, clamped at h¼ 0, free at r¼R1, and simply
supported at h¼/. For circular sectorial plate, the inner boundary
reduces to a single point and is treated as free boundary, so a
three-letter notation is used instead. For example, the symbol
CFS1 means that the plate is clamped at h¼ 0, free at r¼R1, and
S1 type simply supported at h¼/.

For annular sector plate and circular sectorial plate, unless oth-
erwise stated, the values of the following variables are: the outer
radius R1¼ 1 m, the section angle / ¼ 90 deg, and h/R1¼ 0.001.

Choosing appropriate number of terms in the truncated series is
also important in the analysis. Table 4 shows the first four nondi-
mensional frequency parameters of completely clamped circular
sectorial and annular sector plates with different number of terms.
The inner–outer radius ratio is R1/R0¼ 2 for annular sector plate.
From Table 4, the frequency converges fast and monotonically as
the number of terms increases.

For circular sectorial plate, the convergence is also evident,
though slightly slower. The value of R0/R1 should be small
enough, but it cannot be zero because it will cause nmin ¼ �1. It
was found out that a ratio of R0/R1 smaller than 1/20 yields satis-
factory results. In this paper, the number of terms for the displace-
ment functions is set as M�N¼ 10� 10 in all the numerical
examples. In previous studies, as the new logarithmic variable
was not used, the number of terms was large in the truncated
series to obtain accurate results (e.g., M�N¼ 15� 15 is needed
in the work of Wang et al. [20] to obtain satisfactory results).

Free vibration of clamped circular sectorial plate with / ¼
90 deg is investigated here. In Table 1, two ratios of R0/R1¼ 1/20
and 1/40 are used. The spring stiffness values in both directions
are assumed to be the same. The results show that the spring stiff-
ness values should be sufficiently large to simulate the clamped
boundary condition, for example, the nondimensional spring

Fig. 2 Derivation of the frequency parameters versus the elas-
tic boundary restraint parameters

Table 5 Comparison of frequency parameters for annular sector plate with various classical boundary conditions

B.C. Mode number 1 2 3 4 5 6 7 8

CCCC Present 3.3677 4.4791 5.8203 5.9742 6.7084 7.2168 7.7834 8.6131
FEMAB [20] 3.3692 4.4807 5.8240 5.9810 6.7152 7.2240 7.7894 8.626

S1S1S1S1 Present 1.5882 3.063 3.6308 4.4535 5.8097 6.0961 4.9339 6.4738
FEMAN [20] 1.5884 3.0641 3.6320 4.4572 4.9362 5.8163 6.1036 6.4793

S2S2S2S2 Present 1.3469 2.3639 2.8909 3.4244 3.5297 4.5766 4.7263 5.7089
FEMAB [20] 1.347 2.3646 2.8920 3.4255 3.5307 4.5787 4.7307 5.7165

CS2CS2 Present 3.3678 4.4783 5.8192 5.9732 6.7049 7.2154 7.7764 8.6112
FEMAN [20] 3.3680 4.4783 5.8191 5.9727 6.7048 7.2143 7.7746 8.6089

CS1CS1 Present 2.8909 3.3680 4.4783 5.7088 5.8191 5.9727 6.7048 7.2142
FEMAN [20] 2.8920 3.3690 4.4802 5.7164 5.8234 5.9802 6.7123 7.2234

Note: FEMAB represents the ABAQUS software; FEMAN represents the ANSYS software.
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stiffness values of CU ¼ CV ¼ 107 are appropriate for R0/R1¼ 1/
20 and CU ¼ CV ¼ 106 for R0/R1¼ 1/40 in the case of circular
sectorial plate.

As to the boundary conditions, the classical boundary conditions
can be imposed by assigning the attached massless springs with
proper stiffness values. First, similar to the study of Wang et al.
[20], we use two sets of springs in the normal and tangential direc-
tions to simulate the boundary conditions and vary the elastic
spring stiffness values to study their effects on the plate’s vibration
frequency. The plate has an annular sector shape, and the boundary
conditions are free at the two radial edges and restrained by one
type of directional springs (either tangential or normal), with nondi-
mensional stiffness values varying from 10�2 to 107 on the two cir-
cular edges. The variation in frequency parameter is defined as the
difference in X for a certain Uk (k¼U and V) value to the case of
Uk¼ 107, i.e., DX ¼ XCk � XCk¼107 is used in the calculation. The
inner radius R0¼ 0.5 m, and the material is material A in Table 2. It

is shown in Fig. 2 that for Uk(k¼U and V) in the range of 10�2 to
107, DX is negligible, thus aiding frequency convergence.

Table 3 summarizes the selected values of nondimensional
spring stiffness for various classical boundary and elastic bound-
ary conditions. It should be noted that the nonzero stiffness values
of the elastic boundary conditions E1, E2, and E3 are not unique
and dependent on the types of springs.

Table 5 compares the results of an annular plate with various
classical boundary conditions. The results from this study agree
very well to those obtained by ABAQUS-V6.12 and ANSYS-V14.5
[20]. The results in Table 6 correspond to material C in Table 1.
These results also agree very well with previous results reported
by Singh and Muhammad [19], Wang et al. [20], and Shi et al.
[23]. The previously mentioned analysis proves that the present
method using the logarithmic radial variable is accurate and com-
putationally efficient in handing in-plane vibration problems of
annular sector plates or circular sectorial plates. Previous

Table 6 Comparison of frequency parameters for annular sector plates with various boundary conditions

CCCC CFCF FFFF CCCF

u Mode Ref. [23] Ref. [20] Present Ref. [20] Ref. [19] Present Ref. [23] Ref. [20] Present Ref. [23] Ref. [20] Present

p/6 1 5.4390 5.4393 5.4436 2.3213 2.3017 2.3283 3.2426 3.2426 3.2426 3.5475 3.5444 3.5382
2 5.8784 5.8789 5.8892 4.1496 4.1843 4.1786 3.7879 3.7879 3.7880 4.5714 4.5641 4.5723
3 6.8148 6.8151 6.8161 4.3005 4.2736 4.3020 3.8057 3.8057 3.8057 4.9758 5.0135 5.0201
4 8.5272 8.5279 8.5292 5.5519 5.5842 5.5590 4.0817 4.0817 4.0817 6.8268 6.8501 6.8496
5 8.8819 8.8826 8.8848 5.6386 5.5630 5.6419 5.1197 5.1197 5.1198 7.2006 7.2535 7.2587
6 8.8889 8.8896 8.8875 6.2907 6.2801 6.2860 5.7187 5.7187 5.7190 7.6886 7.6896 7.6912

p/2 1 3.1705 3.1706 3.1711 2.5363 2.5249 2.5339 1.0433 1.0433 1.0433 2.6731 2.6788 2.6831
2 4.2188 4.2189 4.2193 2.9806 2.9815 2.9852 1.7875 1.7875 1.7875 3.6268 3.6030 3.6011
3 4.5757 4.5759 4.5756 3.9951 4.0516 3.9964 1.9884 1.9883 1.9883 4.3409 4.3005 4.3020
4 4.5995 4.5995 4.6018 4.3390 4.3641 4.3373 2.9706 2.9706 2.9706 4.4260 4.4002 4.4187
5 5.0436 5.0436 5.0437 4.3711 4.4014 4.3721 2.9782 2.9781 2.9783 4.6873 4.6596 4.6583
6 5.4038 5.4038 5.4068 4.5207 4.5238 4.5228 3.1144 3.1143 3.1146 4.9093 4.9081 4.9090

Note: Here shear modulus G¼Er � (1þlr)/2.

Table 7 Normalized frequency parameters X for annular sector plates subject to classical boundary conditions and sector angle

Sector angle

B.C. R0/R1 Mode no. p/3 p 5p/3

CCCC 0.3 1 3.6099 2.1607 2.185
2 5.2686 2.8594 3.5035
3 5.7941 3.3794 2.8196

0.8 1 7.41334 (7.4123) 7.1682 (7.1360) 7.1451 (7.1130)
2 8.3091 (8.2781) 7.2727 (7.2407) 7.1833 (7.1513)
3 9.5481 (9.5459) 7.4244 (7.4123) 7.2194 (7.2145)

S1S1S1S1 0.3 1 1.9743 1.0545 1.0398
2 3.8205 1.3888 1.0927
3 4.0126 1.9950 1.2950

0.8 1 1.6481 (1.6413) 0.8461 (0.8441) 0.7701 (0.7688)
2 3.0632 (3.0497) 1.2194 (1.2150) 0.9263 (0.9239)
3 4.5357 (4.5162) 1.6481 (1.6413) 1.1402 (1.1364)

S2S2S2S2 0.3 1 2.3623 0.8476 0.5150
2 4.2748 1.6298 1.0100
3 4.3511 2.3624 1.4784

0.8 1 2.1171 (2.1123) 0.7061 (0.7045) 0.4237 (0.4227)
2 4.2254 (4.2159) 1.4119 (1.4088) 0.8473 (0.8454)
3 6.3169 (6.3026) 2.1171 (2.1123) 1.2708 (1.2680)

FFFF 0.3 1 3.4695 2.3285 1.2074
2 4.3455 2.8567 1.5800
3 4.3789 3.4901 2.0651

0.8 1 0.7985 (0.7973) 0.0829 (0.0828) 0.0279 (0.0278)
2 1.9106 (1.9068) 0.2336 (0.2332) 0.0690 (0.0689)
3 2.2122 (2.2097) 0.4720 (0.4711) 0.1519 (0.1516)

Note: The numbers in the parentheses are from Ref. [20].
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Table 8 Normalized frequency parameters X for circular sectorial plates with various boundary conditions and sector angle

Sector angle

B.C. R0/R1 Mode no. p/3 2p/3 p 5p/3

CCC 1/20 1 3.6276 (3.6106) 2.5097 (2.5067) 2.1819 (2.1557) 1.9134 (1.9100)
2 5.1963 (5.1706) 3.6123 (3.6103) 2.8725 (2.8720) 2.2976 (2.2920)
3 5.8099 (5.7842) 3.9971 (3.9838) 3.6171 (3.6081) 2.7299 (2.7247)

S2S2S2 1/20 1 2.3618 (2.3568) 1.2545 (1.2514) 0.8605 (0.8586) 0.5287 (0.5278)
2 4.3201 (4.3061) 2.3619 (2.3569) 1.6329 (1.6289) 1.0205 (1.0181)
3 4.4538 (4.4439) 3.1367 (3.1371) 2.3697 (2.3569) 1.4782 (1.4793)

FFF 1/300 1 2.3583 (2.3659) 1.3811 (1.3889) 1.0509 (1.0780) 0.5356 (0.6073)
2 2.9189 (2.8289) 2.3078 (2.3048) 1.7011 (1.7043) 1.1954 (1.2136)
3 3.6896 (3.7296) 2.3829 (2.3910) 2.0267 (2.0424) 1.2983 (1.4421)

E1E1E1 ðCU ¼ 10Þ 1/20 1 2.1872 1.2206 0.8621 0.5002
2 2.3325 2.2508 1.6074 0.9876
3 3.1886 2.3530 1.6240 1.4577

E2E2E2 ðCV ¼ 102Þ 1/20 1 1.4689 1.0765 0.9124 0.9342
2 2.3447 1.5030 1.4759 1.0854
3 3.8137 2.3556 1.5166 1.3070

E3E3E3 ðCU ¼ CV ¼ 103Þ 1/20 1 3.6089 2.5065 2.1577 1.9186
2 5.1695 3.6112 2.8723 2.2930
3 5.7873 3.9825 3.6122 2.7253

Note: The numbers in the parentheses are from Ref. [20].

Fig. 3 The first three mode shapes of the annular sector plate with different boundary condi-
tions: CCCC—(a) first, (b) second, and (c) third, FFFF—(d) first, (e) second, and (f) third, and
S2S2S2S2—(g) first, (h) second, and (i) third
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techniques usually are only applicable to certain combinations of
boundary conditions and geometrical shapes of plate, but the
method developed here can easily accommodate arbitrary bound-
ary conditions and shapes by changing the corresponding input
parameters.

More computational results are presented later to demonstrate
the robustness and versatility of the method in this study. Table 7
shows the frequency parameters X of annular sector plates with
various boundary conditions. Two values of R0/R1 (0.3 and 0.8)
and three values of sector angle (p/3, p, and 5p/3) are considered.
Similarly, the frequency parameter X of circular sectorial plates
with various boundary conditions is shown in Table 8. Four values
of sector angle (p/3, 2p/3, p, and 5p/3) are considered. Here, the
inner-to-outer radius ratio is taken as 1/300 for all but for the case
of three-edge-clamped boundary, the ratio R0/R1 is taken as 1/20.
It is shown that the sector angles / and boundary conditions play
dominant roles in the frequency parameters of circular sectorial
plates. For the same values of inner-to-outer rations R0/R1 and
same boundary conditions, the increase of the sector angle / leads
to decrease in the frequency.

After solving for the eigenvectors of the coupled eigenvalue
problem in Eq. (30), the physical in-plane modal shapes can be
easily calculated using Eq. (20). A few selected modal shapes of
free in-plane vibration for annular sector plate are shown in Fig. 3.

4 Conclusions

In order to analyze the in-plane natural frequencies for the
orthotropic sector plates with classical boundary conditions, a
simplified solution procedure is developed based on the Ritz
method with improved Fourier expansion. Introduction of the log-
arithmic radial variable significantly accelerates convergence and
reduces computation cost. The developed method takes advantage
of normal improved Fourier Ritz method without the new variable
and exhibits many good characteristics such as good adaptability
for any combination of boundary conditions and geometrical
shapes and sizes, fast convergence, high reliability, and accuracy.
The method is also applied to circular sectorial plate to demon-
strate versatility and robustness.

According to the presented numerical results, the in-plane
vibration characteristics of the plates mainly depend on the geo-
metrical and material parameters and boundary conditions. It is
found that for both annular sector and circular sectorial plates, the
frequency parameters decrease monotonically as the sector angle
increases if the other factors remain the same.

The method presented here is compared to the original theory
that does not use the logarithmic radial variable, and the following
four new characteristics are discussed:

(1) In the Ritz method with improved Fourier expansion for
analyzing the in-plane vibration of sectorial plate, the basic
theory for improved Ritz method and the solution proce-
dure is significantly simplified.

(2) The admissible functions are simple in form with just trigo-
nometric functions. The stiffness matrix and the mass
matrix can be formulated in explicit forms, according to the
several integration formulas in the Appendix. The stiffness
matrix has many zero elements considering the orthogonal-
ity characteristics. Therefore, the method here is efficient in
generating the global matrices.

(3) The range of nondimensional stiffness value for the bound-
ary springs is discussed. Unless specially designated, a
large value of 107 or 108 can be used for clamped boundary
condition in numerical computation for satisfactory results
(within 0.1% error).

(4) The number of terms in the truncated Fourier series for the
displacement field is reduced to 10 for most cases and 11
for special cases where the inner radius is very small. Com-
paring with previous method that does not use the logarith-
mic radial variable (e.g., 15� 15 terms in the work of

Wang et al. [20]), the present method significantly reduces
computation cost for the matrices dimensions in the eigen-
problems, which is about 2/3 of that of Ref. [20].
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Nomenclature

amn, bmn, cmn, and dmn ¼ unknown coefficients
Arr;Ahh; and Arh ¼ the in-plane tensile stiffnesses

(rigidities) fm nð Þ
Ez (z¼ r or h) ¼ Young’s modulus in the z direction

gn hð Þ ¼ admissible functions with variables
n and h

Grh ¼ the shear elasticity
Grh ¼ the shear Young’s modulus

h ¼ uniform thickness
~K ¼ the nondimensional stiffness of the

springs, where ~K ¼ kd
c R1 1� lrlhð Þ=Er

Kuu, Kvv, Kuv ¼ the submatrices of the plate’s global
stiffness matrix

Kuu
mnrs;K

uv
mnrs;

Kvu
mnrs;K

vv
mnrs
¼ the elements of the plate’s global

stiffness matrix

kd
c ¼ stands for the spring restraining

stiffness
L ¼ Lagrangian function

LR ¼ a constant defined as ln R1=R0ð Þ
Mmnrs ¼ the elements of the plate’s global mass

matrix
Muu, Mvv ¼ the submatrices of the plate’s global

mass matrix
Q r; hð Þ ¼ an arbitrary function

R0 ¼ inner radius
R1 ¼ outer radius

t ¼ time
T ¼ the kinetic energy of the sector plate

Tmax ¼ the maximum kinetic energy for the
plate

u ¼ displacements of the plate in the r
direction

v ¼ displacements of the plate in the h
direction

Vmax ¼ the maximum strain energy for the plate
Vpl ¼ the strain energy of the sector plate
Vs ¼ the potential energy

UU ¼ value of the nondimensional spring
stiffness values in the r direction

UV ¼ value of the nondimensional spring
stiffness values in the h direction

lz (z¼ r or h) ¼ Poisson’s ratio in the z direction
n ¼ variable defined as ln r=R0ð Þ
q ¼ the logarithmic radial variable
�q ¼ the plate’s mass density
/ ¼ sector angle

vm rð Þ; fn hð Þ ¼ admissible functions with variables r
and h

X ¼ 2xR1=pð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�q= Er 1� lrlhð Þð Þ
� �q

¼ nondimensional frequency parameter

x ¼ the frequency

Appendix

Useful integration

ðL

0

cos kmxð Þ cos knxð Þdx ¼

0 m 6¼ n

L

2
m ¼ n 6¼ 0

L m ¼ n ¼ 0

8>><
>>: (A1)
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ðL

0

sin kmxð Þ sin knxð Þdx ¼

0 m 6¼ n

L

2
m ¼ n 6¼ 0

0 m ¼ n ¼ 0

8>>><
>>>:

(A2)

ðL

0

sin kmxð Þcos knxð Þdx ¼
1� �1ð Þmþn
� �

Lm

m2 � n2ð Þp
m 6¼ n

0 m ¼ n

8><
>: (A3)

ðL

0

cos kmxð Þ cos knxð Þeaxdx

¼ �1ð Þmþn aeaL

2

1

a2 þ mþ nð Þ2
þ 1

a2 þ m� nð Þ2

 !
ðL

0

sin kmxð Þ sin knxð Þeaxdx
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(A4)

where km ¼ mp=Lð Þ and kn ¼ np=Lð Þ.
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